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Simple Summary: The composition of fish-gut microbial communities has been demonstrated to 

adapt when the host is fed different ingredients. Fishmeal and soy are the conventional protein 

sources used in aquafeeds. However, these feed options are not sustainable anymore due to the 

progressive depletion of wild marine fish stocks and the considerable environmental cost of protein-

rich terrestrial plant cultivation. In this perspective, insects could be a promising source of protein 

and may help aquaculture to cope with the increasing global demand for new protein sources, 

representing the idea of “waste into feed” bioconversion. In this perspective, we evaluated the 

effects of dietary insect meal from Hermetia illucens (Hi) larvae on autochthonous gut microbiota of 

rainbow trout (Oncorhynchus mykiss). Hi larvae were grown on leftover fruit and vegetables 

provided by a local wholesale market. Three diets, with increasing levels of insect meal inclusion 

(10%, 20%, and 30%) and a control diet without insect meal were tested in a 3-month fish feeding 

trial. The data showed that feeding insects influences the intestinal bacterial communities, thus 

improving fish gut health. In our opinion, these findings represent a precious tool for future research 

on salmonid’s microbial communities and their interaction with diet and the host. 

Abstract: This study evaluated the effects of dietary insect meal from Hermetia illucens larvae on 

autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Three diets, with increasing 

levels of insect meal inclusion (10%, 20%, and 30%) and a control diet without insect meal were 

tested in a 12-week feeding trial. To analyze the resident intestinal microbial communities, the 

Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. The 

number of reads taxonomically classified according to the Greengenes database was 1,514,155. 

Seventy-four Operational Taxonomic Units (OTUs) at 97% identity were identified. The core of 

adhered intestinal microbiota, i.e., OTUs present in at least 80% of mucosal samples and shared 

regardless of the diet, was constituted by three OTUs assigned to Propiobacterinae, Shewanella, and 

Mycoplasma genera, respectively. Fish fed the insect-based diets showed higher bacterial diversity 

with a reduction in Proteobacteria in comparison to fish fed the fishmeal diet. Insect-meal inclusion 

in the diet increased the gut abundance of Mycoplasma, which was attributed the ability to produce 

lactic and acetic acid as final products of its fermentation. We believe that the observed variations 

on the autochthonous intestinal microbiota composition of trout are principally due to the prebiotic 

properties of fermentable chitin. 
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1. Introduction 

The global population will reach 9 billion by 2050 with a consequent inevitable increase of food 

demand, especially for animal-based protein sources [1]. In this scenario, the main challenge of the 

world food-producing sector will be to provide an affordable, safe, and sustainable food supply. To 

achieve this goal, a sustainable food production based on low human-interest alternative feed 

ingredients that require less land, water, and energy resources is necessary. Particularly, aquaculture 

is the fastest growing food-producing sector in the world, with a worldwide finfish production 

increased by 90% during the last decade (2004–2014) [2]. Fishmeal (FM) and soy are the conventional 

protein sources used in aquafeeds. However, these feed options cannot be anymore sustained due to 

the progressive depletion of wild marine fish stocks [2–5] and to the considerable environmental cost 

of protein-rich plant cultivation [6,7]. 

All this has encouraged the search for more sustainable protein sources characterized, at the 

same time, by good nutritional values for cultured fish, above all for carnivorous species, which have 

high protein requirements (40–45% for trout and marine finfish). The most promising animal 

alternatives to FM are nonruminant processed animal proteins [8–10] and insect meals [11–14]. In 

recent years, the attention of the aquafeed industry has mainly addressed the use of insects, since 

compared to other animal protein sources, they—in particular, flies—show several advantages. 

Besides being a natural part of the diet for wild fish, insects easily grow on organic waste substrates 

showing a high feed conversion efficiency. They have low ecologic impact and greenhouse gases and 

ammonia production, low risk of transmitting zoonotic infections, and relatively low interest from 

human consumers [11,12,15,16]. Additionally, insects have good nutritional value, since they contain 

high level of proteins (60–80%) and lipids (31–43%) and are rich in essential amino acids (EAA), 

vitamins, and minerals [12]. Recently, seven insects (two flies, two mealworms, and three cricket 

species) have been authorized as fish feed by EU commission regulation (2017/893-24/05/2017). Of 

these, black soldier fly, Hermetia illucens (Hi), is one of the most promising species. Hi larvae grow on 

different organic substrates, consuming twice their weight each day, and, at prepupae stage, they 

contain a very high percentage of protein (36–48% DM) and fat (31–33% DM), and their essential 

amino acid profile is very similar to that of FM [12]. The potential of H. illucens as a valuable feed 

ingredient has been established for several commercially important freshwater and marine fish 

species [17–24]. These studies have demonstrated that H. illucens prepupae meal can replace up to 

40% of FM in salmon (Salmo salar) and sea bass (Dicentrarchus labrax) [18,19] and up to 50% in rainbow 

trout (Oncorhynchus mykiss) [24] without compromising fish growth performances. 

However, although several studies regarding the effect of dietary insect meal on fish growth are 

available in the literature, less is known on its impact on the gut microbiota of fish. Like in mammals, 

the intestinal microbiota of fish plays important role in host metabolism, nutrition, immunity, and 

health of fish [25,26]. It has been largely demonstrated that substitution of FM with alternative protein 

sources, such as plants, yeast, and animal byproducts, alters the diversity and abundance of intestinal 

bacteria in salmonids [9,10,27–31]. 

A positive modulation of fish intestinal microbiota by dietary inclusion of insect meal is 

reasonably expected for at least three reasons. First, insects are rich in chitin a mucopolysaccharide 

polymer structurally analogous to cellulose [32]. Generally, chitin is not digestible by fish and may 

act as an insoluble fiber with potential prebiotic properties. Chitin can be fermented by healthy gut 

microflora, thus contributing to the synthesis of vitamins and other metabolites such as short-chain 

fatty acids (SCFAs), the main energy source of colonocytes [33]. Secondly, chitin has an antimicrobial 

and bacteriostatic activity against several pathogenic Gram-negative bacteria species, such as 

Escherichia coli and Anaerorhabdus furcosa [34–36]. Thirdly, black soldier prepupae are particularly rich 

in lauric acid (C12:0), a medium-chain fatty acid (MCFA) with antimicrobial properties versus Gram-

positive bacteria [37–39]. Actually, the latest studies seem to support this hypothesis. Feeding with 

black soldier larvae meal increases diversity and alters the composition of gut bacteria in rainbow 

trout [14,24,40]. Compared to FM control, insect-fed groups resulted in higher abundance of phyla 

Firmicutes and Actinobacteria with lower abundance of Proteobacteria [14,40]. 
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However, excepting the above-mentioned studies, research on H. illucens meal impact on fish 

gut microbiota remains scarce. Accordingly, the present research aimed to investigate the effects of 

H. illucens meal-based diets on autochthonous (adhered) gut microbiota of rainbow trout. Data 

relating to allochthonous (transient) intestinal bacteria are not included in this study, but they were 

recently reported by Terova et al. [14]. For the feeding trial, defatted insect meal from H. illucens 

prepupal larvae grown on a substrate of fruit and vegetables was used. The high-throughput 

sequencing analysis of 16S rRNA gene was applied to characterize the resident intestinal microbial 

communities of rainbow trout fed for 12 weeks with four different diets: three experimental 

formulations with increasing amounts of H. illucens meal (Hi 10%, Hi 20%, and Hi 30%) and one 

control FM-based feed (Hi 0%). 

2. Materials and Methods 

2.1. Ethics Statement 

All procedures involving fish comply with the guidelines of the European Union Council 

(2010/63/EU) for the use of experimental animals and have been approved by the Italian Ministry of 

Health [REF:1190/2016PR (response of Prot. Nr. 344C6.5 of 13/10/2016) in accordance to the Art.31 of 

D.lgs.26/2014)]. 

2.2. Experimental Diets 

A partially defatted Hermetia illucens (Hi) larvae meal was used to formulate four isonitrogenous 

(crude protein (CP): about 49 g/100 g dry matter), isolipidic (ether extract (EE): about 18 g/100 g dry 

matter), and isoenergetic (gross energy about 19.87 MJ/kg DM) diets based on the control diet 

containing 60% fishmeal (Hi 0). Specifically, the three experimental diets contained 10% (Hi 10), 20% 

(Hi 20), and 30% (Hi 30) of Hi meal in partial replacement of fishmeal. All feeds were prepared 

through cold pelleting at the experimental facility of the Department of Agricultural, Forest and Food 

Science (DISAFA) of the University of Turin (Torino, Italy). Details concerning feed manufacturing 

have been described by Terova et al. [14]. However, briefly, all grounded ingredients were mixed 

with oils; water was then added to the mixture to attain an appropriate consistency for pelleting. Each 

diet was cold pelleted using a 2.5 mm die meat grinder. After pelleting, the diets were dried at 50 °C 

for 48 h and then stored in dark bags at −20 °C until utilisation. The ingredients and proximate 

composition of diets are reported in Table 1. Due to differences in chemical composition between Hi 

and fishmeal and to maintain isonitrogenous, isolipidic, and isoenergetic diets, the level of inclusion 

of some other dietary ingredients such as fish oil and wheat bran were modified with the increase of 

HI inclusion in the diets. 

2.3. Feeding Trial and Sampling 

The detailed description of experimental trial can be found at Terova et al. [14]. However, briefly, 

a total of 348 rainbow trout (Oncorhynchus mykiss) with an initial mean body weight of 66.5 ± 1.7 g 

were distributed in 12 indoor rectangular fiber-glass tanks and fed for 12 weeks with four 

experimental diets in triplicate (three tanks/diet). Feed was manually distributed and the feeding rate 

was restricted to 1.5% of biomass for the entire duration of the experiment. 

At the end of the trial, three fish per replicate (nine fish/diet) were euthanized with 320 mg/L of 

tricaine-methasulfonate (MS-222, Sigma-Aldrich, Milan, Italy). Before dissection, the external surface 

of each fish was wiped with 70% ethanol to avoid any accidental contamination from external body 

surface microflora. The intestine (excluding pyloric ceca) was aseptically removed with alcohol-

disinfected instruments from each fish and the fecal matter removed by squeezing. The 

autochthonous (adhered) intestinal bacteria were then collected by scraping intestinal mucosa with 

a sterile cotton swab. The tip of the swab was immediately transferred in a sterile Eppendorf tube 

containing 200 μL of XpeditionTM Lysis/Stabilization Solution (Zymo Research, Irvine, CA, USA) 

and vortexed several times to facilitate the bacteria releasing in the solution. After 2 h, the swab was 

removed, and the solution stored at room temperature until DNA extraction. 
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Table 1. Diet formulation and proximate composition (modified from Terova et al. [14]). 

 H. illucens Meal 
DIET 

Hi 0 Hi 10 Hi 20 Hi 30 

Ingredients (% as it) 

Fishmeal a  60 54 48 42 

Hermetia illucens meal  0 10 20 30 

Fish oil  7 7 7 7 

Soybean oil  5 4 3 2 

Wheat bran  10 7 4 1 

Wheat meal  4 4 4 4 

Starch gelatinized D500  11 11 11 11 

Vitamin premix b  1.5 1.5 1.5 1.5 

Mineral premix c  1.5 1.5 1.5 1.5 

Proximate composition (g/100g DM) 

DM 89.82 89.03 88.62 87.70 86.74 

CP 48.62 49.07 49.88 49.48 49.03 

EE 20.58 17.73 17.98 17.95 17.56 

Ash 8.74 13.71 14.16 14.48 14.26 

CHI 4.96 0.00 0.50 0.99 1.51 

NFE 17.10 19.48 17.49 17.10 17.64 

a Fish meal was purchased from Corpesa S.A. (Santiago, Chile). Proximate composition (% as-fed 

basis): 91.3 DM; 65.8 CP; 9.4 EE; 15.5 Ash. b Vitamin premix (IU or mg/kg diet) (Granda Zootecnici Srl, 

Savigliano, Italy): DL-α tocopherol acetate 60 IU; sodium menadione bisulphate 5 mg; retinyl acetate 

15,000 IU; DL-cholecalciferol 3000 IU; thiamin 15 mg; riboflavin 30 mg; pyridoxine 15 mg; vitamin B12 

0.05 mg; nicotinic acid 175 mg; folic acid 500 mg; inositol 1000 mg; biotin 2.5 mg; calcium pantothenate 

50 mg. c Mineral premix (g or mg/kg diet) (Granda Zootecnici Srl): bicalcium phosphate 500 g, calcium 

carbonate 215 g, sodium salt 40 g, potassium chloride 90 g, magnesium chloride 124 g, magnesium 

carbonate 124 g, iron sulfate 20 g, zinc sulfate 4 g, copper sulfate 3 g, potassium iodide 4 mg, cobalt 

sulfate 20 mg, manganese sulfate 3 g, sodium fluoride 1 g. DM: Dry matter; CP: Crude protein; EE: 

Ether extract; CHI: chitin; NFE: Nitrogen-free extract (calculated as 100 − (CP + EE + Ash + CHI). 

2.4. Bacterial DNA Extraction 

DNA was extracted from 200 μL of bacterial suspension using DNeasy PowerSoil® Kit (Qiagen, 

Milan, Italy), according to the manufacturer’s instructions. The samples were lysed in PowerBead 

Tube by means of a TissueLyser II (Qiagen) for 2 min at 25 Hz. As the negative control of the 

extraction procedure, a sample with only lysis buffer was processed in parallel with samples. The 

concentration of extracted DNA was measured using NanoDropTM 2000 Spectrophotometer (Thermo 

Scientific, Milan, Italy) and stored at −20 °C until the PCR reaction was performed. 

2.5. Illumina 16S Metagenomic Sequencing Library Construction 

16S ribosomal RNA gene amplicon libraries were prepared using a primer pair sequences for 

the V3–V4 region following the Illumina protocol “16S Metagenomic Sequencing Library Preparation 

for Illumina MiSeq System” (#15044223 rev. B). Bacterial 16S rRNA gene amplicons were generated 

from 50 ng of microbial genomic DNA in 25 μL PCR using Platinum® Taq DNA Polymerase High 

Fidelity kit (Thermo Fisher Scientific, Italy) and tailed forward and reverse primer Pro341F (5′-

CCTACGGGNBGCASCAG -3′) and Pro805R (5′-GACTACNVGGGTATCTAATCC -3′) selected by 

Takahashi et al. [41]. The expected size on Agilent 2100 Bioanalyzer trace after the amplicon PCR step 

was ~550 bp. The entire procedure for 16S rRNA gene library preparation and sequencing is described 

in Rimoldi et al. [10]. Briefly, Illumina paired-end adapters with unique Nextera XT indexes were 

ligated to 16S amplicons using Nextera XT Index Kit (Illumina, San Diego, CA, USA). All libraries 

were then subjected to quality control using qPCR using KAPA Library Quantification Kits Illumina® 

Platforms (Kapa Biosystems Ltd., London, UK), pooled at equimolar concentrations, and diluted to 6 
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picomolar. Pooled libraries were then multiplexed and sequenced on an Illumina MiSeq platform 

(Illumina, San Diego, CA, USA) with paired-end 2 × 300 bp sequencing chemistry. 

2.6. Metagenome Data Analysis 

Raw FASTQ sequencing data were processed using the open-source bioinformatics pipeline 

Usearch 9.2 (Edgar, 2010) [42] at the default setting. To reconstruct the original amplicons, 

overlapping R1 and R2 paired reads were merged using the ‘fastq_mergepairs’ command and filtered 

for base quality (Q > 30) by means of the ‘fastq_filter’ command. The ‘fastx_uniques’ denoising 

command was used on remaining high-quality reads and denoised sequences with 97% or higher 

identity were de novo clustered into Operational Taxonomic Units (OTUs). Chimeric sequences were 

removed using ‘cluster_otus’ script with UPARSE-OUT algorithm. Taxonomy was assigned to each 

OTU using ‘usearch_global’ script against the Ribosomal Database Project (RDP) 

(http://rdp.cme.msu.edu). Only the OTUs that represented at least 0.005% of total reads were kept. 

The taxonomical classification was performed down to the genus level. OTUs assigned to 

chloroplasts and mitochondria were removed from the downstream analysis since of eukaryotic 

origin. Alpha and beta diversity statistics have been performed using Usearch script ‘alpha_div’ and 

‘beta_div’, respectively. 

Alpha diversity was calculated based on a rarefied OTU table (rarefied at the lowest sample size) 

using diversity metrics ‘richness’, ‘Chao1’ and ‘Shannon’, and evenness metrics ‘Simpson’ and 

‘berger_parker’. The distances among bacterial communities (beta diversity) based on both OTUs 

presence and their abundances or on presence and absence alone were represented using a Bray–

Curtis and binary Bray–Curtis matrix, respectively. The dissimilarity matrices were visualized by 

Non-Metric Multidimensional Scaling (NMDS) plots. 

The common core microbiome (OTUs shared regardless of the diet and found in at least seven 

out of the nine samples per dietary group) was identified and visualized by a Venn diagram drawn 

using the web tool http://bioinformatics.psb.ugent.be/webtools/Venn/. 

2.7. Statistical Analysis 

All data were first checked for normality and homoscedasticity by Shapiro–Wilk’s and Levene’s 

test, respectively. Depending if normality of the data was satisfied or not, differences between groups 

were analysed by one-way ANOVA followed by Tukey–Kramer post-hoc test or by nonparametric 

Kruskal–Wallis and Mann–Whitney test with Bonferroni correction for multiple testing. Statistical 

significance was set at p < 0.05. All the statistical analyses were performed using Past3 software 

(Hammer et al. 2001) [43]. 

The number of reads across samples was normalized by sample size and the relative abundance 

(%) of each taxon was calculated. Only those taxa with an overall abundance of more than 1% (up to 

order level) and 0.01% at family and genus level were considered for statistical analysis. Before being 

statistically analyzed, the resulting microbial profiles were calculated as the angular transformation 

(arcsine of the square root). 

Multivariate analysis of beta diversity was tested using Similarity Percentage Analysis (SIMPER) 

followed by one-way Permutational Multivariate Analysis of Variance (PERMANOVA) and Analysis 

of Similarities (ANOSIM) using Bray–Curtis index at 999 permutations with diet as factor. Bonferroni 

correction was applied to determine significant differences (p < 0.05) in gut microbial communities 

between diets. 

3. Results 

3.1. Structure of Autochthonous Intestinal Bacterial Communities 

The 36 intestinal mucosa samples from rainbow trout fed the FM and Hi meal diets were 

subjected to Illumina Miseq sequencing of the V3–V4 region of the 16S rRNA gene. After data quality 

filtering, the total number of sequences taxonomically classified was 1,514,155, which corresponded 

to 42,060 ± 12,839 (mean ± SD) reads per fish. A total of 74 OTUs at 97% identity were identified in 
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trout mucosa samples (Table S1). All sequencing data, as fastq files, were deposited in the European 

Nucleotide Archive (EBI ENA) public database as accession project code PRJEB28677 and sample 

accession codes from ERS3037754 to ERS30378369). The core of adhered intestinal microbiota, i.e., 

OTUs present in at least 80% of mucosal samples and shared regardless of the diet, was constituted 

by only 3 OTUs assigned to Propiobacterinae, Shewanella and Mycoplasma genera, respectively (Figure 

1). 

 

Figure 1. Venn diagram representing unique and shared Operational Taxonomic Units (OTUs) among 

all dietary groups. The core microbiome was defined as the OTUs present in 80% of the samples 

regardless of diet. 

The bacterial OTUs found in fish mucosa samples were mainly comprised of six phyla, seven 

classes, ten orders, 15 families, and 22 genera (Table S1). However, considering only the most 

representative taxa, the overall autochthonous intestinal microbial community consisted of three 

phyla, four classes, four orders, 12 families, and 22 genera. The microbial profiles of each dietary 

group and individual fish are presented at the phylum (Figure 2), family (Figure 3), and genus (Figure 

4) level. 
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Figure 2. Relative abundance (%) of the overall most prevalent bacterial phyla in each dietary groups 

(A) and individual fish (B). In the figure, all taxa with an overall abundance of ≥ 1% were reported. 
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Figure 3. Relative abundance (%) of the overall most prevalent bacterial families in each dietary 

groups (A) and individual fish (B). In the figure, all taxa with an overall abundance of ≥ 0.01% were 

reported. 

To calculate alpha rarefaction indices, a sequencing depth of 17,800 reads per sample was 

considered. Analysis of alpha-diversity of gut bacteria showed that entropy, indicated by Shannon 

evenness (Shannon_e) and Simpson indices, significantly increased (p < 0.05) for fish fed insect diets 

Hi 20 and Hi 30, but not Hi 10, in comparison to the control Hi 0 group (Table 2). Similarly, Hi 20 and 

Hi 30 samples showed the highest values for reciprocal Berger_parker index (1/d). An increase of this 

index value corresponds to an increase in bacteria diversity and a decrease in dominance. Conversely, 

Hi meal administration did not significantly affect either the number of observed OTUs or species 

richness (Chao1 index) (Table 2). 



Animals 2019, 9, 143 9 of 18 

 

Figure 4. Relative abundance (%) of the overall most prevalent bacterial genera in each dietary groups 

(A) and individual fish (B). In the figure, all taxa with an overall abundance of ≥ 0.01% were reported. 

Table 2. Number of reads per sample assigned to OTUs and alpha diversity metrics values 

(normalized at the lowest sample size: 17,800 sequences) of gut microbial community of rainbow trout 

fed Hi 0 (n = 9), Hi 10 (n = 9), Hi 20 (n = 9), and Hi 30 (n = 9) diets for 12 weeks. 

Items Hi 0 Hi 10 Hi 20 Hi 30 

Reads 43,654 ± 18,004 46,206 ± 14,511 37,146 ± 6815 41,233 ± 9479 

Observed OTUs 24.3 ± 9.4 24.7 ± 3.9 23.9 ± 6.9 30.0 ± 10.9 

Chao 1 27.1 ± 9.9 26.8 ± 5.1 30.6 ± 12.0 36.5 ± 10.6 

Shannon_e 1.0 ± 0.4 a 0.7 ± 0.4 a 0.2 ± 0.3 b 0.3 ± 0.3 b 

Simpson 0.5 ± 0.2 b 0.6 ± 0.2 b 0.9 ± 0.2 a 0.9 ± 0.2 a 

Berger_parker (1/d) 0.6 ± 0.2 b 0.7 ± 0.2 b 0.9 ± 0.1 a 0.9 ± 0.1 a 

Reported data are expressed as means ± SD (n = 9). The means were compared by ANOVA (p < 0.05). 
a,b Different superscript letters on the same row indicate significant differences after Tukey–Kramer 

post-hoc test. 

Insect diets had an overall effect on the beta-diversity and composition of gut mucosa-associated 

bacteria both in presence/absence (binary Bray–Curtis matrix) (PERMANOVA: F = 6.785, p = 0.001; 

ANOSIM: R = 0.4805, p = 0.001) and relative abundance (Bray–Curtis matrix) (PERMANOVA: F = 

5.202, p = 0.001; ANOSIM: R = 0.2522, p = 0.002) of OTUs (Table 3). SIMPER analysis showed that, 

compared with control Hi 0, fish fed Hi 20 diet were the most dissimilar followed by fish fed Hi 30 
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and Hi 10 diets (Table 3). Although the gut microbial communities were significantly influenced by 

diet, the found percentages of dissimilarity between control and Hi diets were relatively low. They 

ranged, indeed, from 32.7 to 26.1% and from 19.2 to 16.8 %, depending on if OTUs abundance was or 

not taken into account, respectively. The results of pairwise comparisons are summarized in Table 3. 

Table 3. Results of Permutational multivariate analysis of variance (PERMANOVA) and Analysis of 

similarity (ANOSIM) based on Bray–Curtis and binary Bray–Curtis dissimilarities using abundance 

data of mucosa-associated bacterial communities. Significant p-values are in bold. 

Statistics Bray–Curtis Binary Bray–Curtis 

PERMANOVA 

Permutation N 999  999  

Total sum of squares 1.383  0.448  

Within-group sum of squares 0.929  0.274  

F 5.202  6.785  

p (same) 0.001  0.001  

Pairwise comparisons p-value F-value p-value F-value 

Hi 10 vs Hi 0 0.708 2.144 0.006 9.156 

Hi 20 vs Hi 0 0.012 12.350 0.012 9.849 

Hi 30 vs Hi 0 0.078 7.191 0.006 12.450 

Hi 10 vs Hi 20 0.042 5.824 0.030 5.189 

Hi 10 vs Hi 30 0.486 2.691 0.156 2.490 

Hi 20 vs Hi 30 1.000 1.052 0.564 1.934 

ANOSIM 

Permutation N 999  999  

R 0.252  0.480  

p (same) 0.002  0.001  

Pairwise comparisons p-value R p-value R 

Hi 10 vs Hi 0 0.468 0.133 0.006 0.585 

Hi 20 vs Hi 0 0.018 0.515 0.006 0.703 

Hi 30 vs Hi 0 0.036 0.386 0.006 0.765 

Hi 10 vs Hi 20 0.042 0.344 0.030 0.425 

Hi 10 vs Hi 30 0.534 0.130 0.348 0.159 

Hi 20 vs Hi 30 1.000 0.008 0.180 0.190 

SIMPER 

Hi 10 vs Hi 0  26.16 16.77 

Hi 20 vs Hi 0 32.75 19.23 

Hi 30 vs Hi 0 31.27 18.33 

Hi 10 vs Hi 20 25.81 16.09 

Hi 10 vs Hi 30 24.79 12.98 

Hi 20 vs Hi 30 19.24 13.85 

The NMDS plots of binary Bray–Curtis (Figure 5A) and Bray–Curtis (Figure 5B) dissimilarity 

data agreed with permutational multivariate analysis showing slight clustering in relation to diet. 

Fish fed Hi 0 diet grouped separately from fish fed Hi 20 (Figures 5A,B). Interestingly, fish fed Hi 

meal, regardless of dietary inclusion level, formed a separate cluster from the control due to the 

presence/absence of specific OTUs (Figure 5A). 
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Figure 5. Non-metric multidimensional scaling (NMDS) with 2D Binary Bray–Curtis (A) and Bray–

Curtis (B) index of bacterial OTUs found in intestinal mucosa samples of rainbow trout fed fishmeal 

(Hi 0) or H. illucens larvae meal (Hi 10, Hi 20, Hi 30) diets. 

3.2. Dietary Modulation of Autochthonous Intestinal Microbiota 

The mucosa-adhered microbial community of our trout was mainly dominated, regardless of 

the diet, by three phyla: Tenericutes, Proteobacteria, and Firmicutes (Figure 2, Table 4). Among them, 

Tenericutes were the most abundant bacteria in all samples with a relative abundance ranged between 

91 and 56%, followed by Proteobacteria (38–5%), and Firmicutes (0.5–5%). At the phylum level, the 

amounts of Tenericutes and Proteobacteria were significantly influenced (p < 0.05) by insect meal 

inclusion in the diet. Specifically, compared to control diet, Tenericutes, essentially assigned to 

Mollicutes, significantly increased in fish fed Hi 20 and Hi 30 diets, on the contrary, in the same 

groups, the amount of Proteobacteria, mainly represented by Gammaproteobacteria class, diminished 

(Table 4). At the family and genus level, statistically significant differences in relative abundance of 

bacterial OTUs were principally found between Hi 0 and Hi 20 dietary groups. Fish fed the Hi 20 diet 

had a significantly lower percentage of bacteria belonging to Shewanellaceae, Enterobacteriaceae, and 

Neisseriaceae than fish of the control group (Figure 3, Table 4). 
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Table 4. Mean relative abundance (%) ± SD of the most prevalent phyla, orders, classes, families, and 

genera found in mucosa samples of rainbow trout fed with four experimental diets. Means in the 

same row with different letters indicate statistical significance between taxonomic groups’ 

abundances (p < 0.05). 

Taxa Hi 0 Hi 10 Hi 20 Hi 30 

Phylum     

Tenericutes 56.48 ± 21.74 b 77.06 ± 17.44 ab 93.03 ± 10.12 a 91.52 ± 12.68 a 

Proteobacteria 38.36 ± 18.26 a 21.07 ± 16.85 ab 5.03 ± 7.51 b 7.69 ± 12.82 b 

Firmicutes 5.05 ± 8.37 1.84 ± 4.00 1.86 ± 4.34 0.49 ± 0.96 

Class             

Mollicutes 56.48 ± 21.74 b 77.06 ± 17.44 ab 93.03 ± 10.12 a 91.52 ± 12.68 a 

Gammaproteobacteria 36.20 ± 18.58 a 20.65 ± 16.55 ab 4.98 ± 7.46 b 7.57 ± 12.78 b 

Betaproteobacteria 5.01 ± 8.39 a 1.82 ± 4.00 a 1.81 ± 4.34 b 0.37 ± 0.78 ab 

Clostridia 2.15 ± 2.85 0.41 ± 0.39 0.03 ± 0.07 0.10 ± 0.20 

Order             

Mycoplasmatales 56.48 ± 21.74 b 77.06 ± 17.44 ab 93.03 ± 10.12 a 91.52 ± 12.68 a 

Alteromonadales 28.69 ± 20.77 15.85 ± 13.38 4.74 ± 7.46 5.32 ± 12.69 

Aeromonadales 2.30 ± 2.87 a 1.67 ± 3.10 ab 0.12 ± 0.30 ab 0.11 ± 0.30 b 

Neisseriales 2.15 ± 2.85 a 0.41 ± 0.39 a 0.03 ± 0.07 b 0.10 ± 0.20 ab 

Family             

Mycoplasmataceae 53.16 ± 20.49 b 77.06 ± 17.44 ab 93.03 ± 10.12 a 91.52 ± 12.68 a 

Shewanellaceae 28.69 ± 20.77 a 15.85 ± 13.38 ab 4.74 ± 7.46 b 5.62 ± 12.59 ab 

Aeromonadaceae 2.53 ± 2.77 a 1.67 ± 3.10 ab 0.12 ± 0.30 b 0.01 ± 0.02 b 

Enterobacteriaceae 4.31 ± 3.67 a 3.13 ± 4.01ab 0.13 ± 0.16 b 1.95 ± 5.33 ab 

Neisseriaceae 1.60 ± 2.45 a 0.22 ± 0.21 b 0.02 ± 0.05 b 0.01 ± 0.02 ab 

Clostridiaceae 0.31 ± 0.70 0.17 ± 0.42 0.01 ± 0.01 0.02 ± 0.03 

Actinomycetales 0.11 ± 0.30 0.03 ± 0.02 0.06 ± 0.06 0.23 ± 0.35 

Pseudomonadaceae 0.16 ± 0.47 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Staphylococcaceae 0.03 ± 0.07 0.01 ± 0.01 0.03 ± 0.04 0.07 ± 0.12 

Methylobacteriaceae 0.00 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.01 ± 0.01 

Lactobacillaceae 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.02 ± 0.03 

Enterococcaceae 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 

Genus             

Mycoplasma 56.48 ± 21.74 b 77.06 ± 17.44 ab 93.03 ± 10.12 a 87.24 ± 15.81 ab 

Shewanella 28.69 ± 20.77 a 15.85 ± 13.38 ab 4.74 ± 7.46 b 9.93 ± 16.53 ab 

Aeromonas 2.30 ± 2.87 a 1.67 ± 3.10 ab 0.12 ± 0.30 ab 0.01 ± 0.02 b 

Citrobacter 2.83 ± 3.15 a 0.41 ± 0.62 ab 0.04 ± 0.06 b 1.28 ± 3.69 ab 

Kluyvera 1.72 ± 2.23 a 1.31 ± 2.02 ab 0.01 ± 0.02 b 0.57 ± 1.67 ab 

Yersinia 0.23 ± 0.58 1.40 ± 3.64 0.07 ± 0.11 0.00 ± 0.01 

Deefgea 1.66 ± 2.42 a 0.22 ± 0.21 a 0.02 ± 0.05 b 0.01 ± 0.02 ab 

Clostridium_sensu_stricto 0.28 ± 0.71 0.17 ± 0.42 0.01 ± 0.01 0.02 ± 0.03 

Pantoea 0.27 ± 0.66 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 

Pseudomonas 0.16 ± 0.47 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Staphylococcus 0.03 ± 0.07 0.01 ± 0.01 0.03 ± 0.04 0.07 ± 0.11 

Methylobacterium 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.01 ± 0.01 

Lactobacillus 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.02 ± 0.03 

Enterococcus 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 

a,b Different superscript letters on the same row indicate significant differences after Tukey–Kramer 

post-hoc test. 

Relative abundance of Aeromonadaceae decreased for both Hi 20 and Hi 30 diets, whereas the 

Mycoplasmataceae amount increased in these samples (Table 4). Accordingly, fish fed diet Hi 20 

showed a significant enrichment in bacteria assigned to Mycoplasma genus (Figure 4, Table 4). 

Conversely, the relative abundance of Shewanella, Citrobacter, Kluyvera, and Deefgea genera was 

significantly reduced in resident intestinal microflora of trout fed Hi 20 diet in comparison to the FM 
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dietary group. Lastly, only dietary inclusion of 30% of Hi meal caused a significant reduction of 

bacteria belonging to Aeromonas genus in the intestine of our trout (Table 4). 

4. Discussion 

Insect proteins represent a more sustainable alternative than plants to fishmeal in aquafeeds due 

to their low environmental footprint [44]. Their value as ingredients in fish feed has been widely 

reviewed, demonstrating no negative effect on fish growth performances when used in place of fish 

meal in the diet [12,13,45–47]. However, research on insect meal impact on gut microbiota of fish is 

still limited. Therefore, the present study could contribute to fill this gap of knowledge by 

investigating for the first time the effects of feeding Hermetia illucens larvae meal on the mucosa-

adhered microbiota of rainbow trout. The mucosa-associated bacterial community, indeed, is 

expected to have greater impact on host metabolism and health status than transient intestinal 

bacteria. Bruni et al. [24] firstly explored the dietary Hi meal’s effects on autochthonous microbiota 

of trout. However, in that study, the gradient gel electrophoresis (DGGE) technique was used which 

can detect lower number of bacterial species than the high throughput sequencing (Illumina MiSeq) 

used in the present research. Indeed, studies investigating fish gut microbiota differ to each other at 

many levels, including methods of microbiome analysis. 

In the present study, nine individual fish per diet were used to evaluate autochthonous gut 

bacteria by high-throughput sequencing. Four diets characterized by an increasing percentage of H. 

illucens larvae meal (Hi 0, Hi 10, Hi 20; Hi 30) in replacement of fishmeal, were tested. 

Results obtained from our metagenomic analysis indicated that the most abundant phylum in 

rainbow trout, regardless of the diet, was Tenericutes. Specifically, within this phylum, the Mollicutes 

were the dominant class that, in turn, was exclusively represented by the Mycoplasma genus. Recent 

studies have reported that Tenericutes are the prominent phylum, with Mycoplasma being the 

dominant genus, in the distal intestine of rainbow trout, suggesting that trout could be a specific host 

for this microbe [48,49]. Mycoplasma is usually difficult to isolate by conventional microbiological 

culture methods but using NGS approaches, it has been possible to reveal mycoplasma dominance in 

the intestine of trout. Furthermore, our sequencing results confirmed the results of previous studies, 

i.e., bacterial communities adhering to mucosa differ from the transient (allochthonous) microflora 

in fish intestine [24,28,50,51]. Indeed, in a very recent paper of our group [14], Proteobacteria, 

Firmicutes, and Actinobacteria, in this descending order of abundance, mainly dominated the 

allochthonous gut microbial community of trout. Interestingly, likewise Bruni et al. [24] OTUs 

attributable to lactic acid bacteria (Firmicutes phylum), were only found in high amount in the gut 

content samples of trout fed insect meal [14], but were practically absent in gut mucosa of the same 

fish. Conversely, in line with previous studies in rainbow trout [24,52], a high number of bacteria 

belonging to Proteobacteria phylum (mainly represented by Gammaproteobacteria) harboured trout 

intestinal mucosa. The most abundant Gammaproteobacteria detected were associated to the genera 

Shewanella, Aeromonas, Citrobacter, and Kluyvera. The same Gammaproteobacteria genera, in addition to 

Acinetobacter, were found by Bruni and colleagues [24] in mucosa-associated microbiota of trout. 

Differences between the present and the previously published study of our group [14] are not 

limited to the most abundant phyla. In mucosa samples, the number of OTUs was significantly lower 

than in gut digesta samples obtained from the same fish, i.e., 74 OTUs against 450 OTUs [14]. These 

data are in line with Kim et al. [50], who found in bacteria community hosted by gut mucosa a smaller 

biodiversity than in the intestinal content. This means that the abundance and diversity of mucosa-

adhered bacterial populations could be quite different from the allochthonous microbiota, indicating 

that some microbial species poorly colonize gut mucosal layer. 

Although autochthonous bacterial communities were dominated by the same phyla irrespective 

of the diet, the present study showed that they are plastic and can be modulated by dietary inclusion 

of insect meal and perhaps, even partly modified by the other two components that simultaneously 

decreased in our diets, i.e., soybean oil and wheat bran. This is in agreement with the results of the 

majority of studies that have assessed alternative dietary protein sources in salmonids [9,10,27,28,31]. 

In particular, biodiversity parameters (Shannon and Simpson evenness indices) were significantly 
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increased by dietary supply of 20% of insect meal in our study, whereas the same diet did not 

significantly increase the bacterial richness (chao 1 index). Our findings are in line with previous 

studies that have evaluated the effects of dietary inclusion of Hi meal in trout [14,24,40]. In these 

studies, the bacterial biodiversity was positively correlated to insect meal inclusion, too. Likewise, an 

increase in bacterial alpha diversity was obtained by adding krill or chitin in the diet of salmonids 

[53,54]. Therefore, by taking into account the chitin content in the insect meal, our results should not 

be surprising. Chitin is an indigestible mucopolysaccharide polymer, structurally analogous to 

cellulose and it can act as a prebiotic increasing gut microbiota diversity. High bacterial diversity is 

generally considered as an indicator of a healthy gut. Reduced diversity, instead, is frequently related 

to dysbiosis and the risk of diseases, as there is limited bacterial competition for nutrients and 

colonization by incoming enteric pathogens [55,56]. 

The NMDS plots of Bray–Curtis and binary Bray–Curtis dissimilarity matrices displayed a slight 

clustering of fish fed Hi meal from control fish fed without Hi and this was statistically validated by 

multivariate tests PERMANOVA and ANOSIM. Our data revealed that including Hi meal in the diet 

caused a significant reduction of mucosa-adhered Proteobacteria (phylum of Gram-negative bacteria 

containing pathogens), predominantly belonging to the Gammaproteobacteria class, in comparison to 

control fish group. Similarly, with respect to the control fish group, feeding insect meal resulted in a 

lower abundance of Proteobacteria in the gut digesta of trout, too [14], and the same result was found 

in the mixed luminal content and mucosa-adhered trout microbiota in the study of Huyben et al. [40]. 

Consistently, previous studies in trout reported that the presence of Proteobacteria was favoured by 

an animal protein-based diet, rather than by a vegetable diet rich in fiber [27,31]. Therefore, the 

Proteobacteria decrease in insect meal-fed groups could be due to chitin that is a form of insoluble 

fiber. Actually, there are several evidences supporting antimicrobial and bacteriostatic properties of 

chitin and deacetylated chitin derivatives against several harmful Gram-negative bacteria [34]. In 

Atlantic cod (Gadus morhua) and hybrid tilapia, the supply of chitin decreased growth of pathogenic 

bacterial species, such as E. coli, A. furcosa, and A. hydrophila, respectively [35,36]. 

In our study, microbiota of trout fed with Hi meal showed a reduction of Gammaproteobacteria, 

mainly represented by genera Shewanella, Aeromonas, Citrobacter, and Kluyera. Shewanella spp., 

especially S. schegeliana, which has interesting enzymatic activities, being an omega-3 fatty acid-

producing bacteria [57,58]. On the other hand, Aeromonas and Citrobacter genera include potential 

pathogen species, such as A. salmonicida, A. hydrophyla, C. freundii, and C. braakii, that cause diseases 

in fish. Therefore, the growth inhibiting of potential pathogen genera represents a positive effect of 

insect meal inclusion in the trout diet. 

Interestingly, all genera that were adversely affected by insect-based diets were Gram-negative 

bacteria. Accordingly, Vogel et al. [59] detected, by standard plate-growth inhibition assay, a strong 

antimicrobial activity against Gram-negative bacteria of the aqueous extracts of H. illucens larvae 

specifically reared on high-protein (brewer’s grains) and cellulose diets, thus affirming a diet-

dependent antimicrobial activity of H. illucens extracts against the bacterial species. 

Black soldier larvae used in our research were mass-reared on a fruit and vegetable substrate 

rich in cellulose. This could explain the bactericidal effect on Gram-negative bacterial genera 

harboured in the intestinal mucosa of trout fed with insect meal. In agreement, Bruni et al. [24] found 

that OTUs related to Aeromonas rivipollenis were only abundant in the control fish group, but unlike 

us, the insect-fed trout were rich in bacteria related to Citrobacter, Pseudomonas, and Delftia genera. 

However, their partially divergent results could depend on the limited discriminatory power of the 

DGGE technique applied. 

The increased number of bacteria belonging to Mycoplasma genus found in the gut of our fish 

fed Hi 20 and Hi 30 diets should not have negative consequences on fish health, but rather it could 

bring benefits. As mentioned, Mycoplasma is specifically adapted to the gastrointestinal environment 

of farmed rainbow trout [47,48]. This genus includes Gram-positive bacteria that are closely related 

to the Bacilli/Clostridium branch of the Firmicutes phylum and are characterized by extremely small 

genome (~580 Kbp). Due to their genome size, it is improbable that they could carry out complex 

metabolic functions within the fish intestine, but perhaps they are obligate commensal 
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microorganisms of the gut ecosystem. It has been reported that Mycoplasma bacteria produce lactic 

acid and acetic acid as their major metabolites [60]. Thus, the dominance of Mycoplasma in the 

intestine of trout could be considered a result of a long-established symbiosis in which this microbe 

benefits from easy access to a multitude of fermentable substrates and the host benefits from the final 

metabolites produced by bacterial fermentations. A recent study in trout found a major disease 

susceptibility associated with decreased Mycoplasma levels in the gut [61], whereas in Chinook 

salmon, the abundance of potentially pathogenic Vibrio appeared to be inversely correlated with the 

presence of Mycoplasma [62]. These evidences support the hypothesis that Mycoplasma has a 

beneficial action on host health by producing antibacterial compounds, such as lactic acid. However, 

further research on potential functional role of symbiotic bacteria is undoubtedly required. 

5. Conclusions 

In summary, this study showed the effects of dietary Hermetia illucens larvae meal on the resident 

intestinal microbiota of rainbow trout using Illumina high-throughput sequencing. Altogether, our 

results indicate that feeding insect meal influences the trout intestinal bacterial community, thus 

improving fish gut health. Fish fed the insect-based diets had higher bacterial diversity, with a 

reduction in Proteobacteria in comparison to fish fed the fishmeal diet. Insect-meal inclusion in the 

trout diet increased the gut abundance of Mycoplasma, which was attributed to the ability to produce 

lactic and acetic acid as final products of fermentation. We believe that the observed variations on the 

autochthonous intestinal microbiota composition of trout are mainly due to the prebiotic properties 

of fermentable chitin. In our opinion, these findings represent a precious tool for future research on 

salmonid microbial communities and their interactions with diet and the host. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: List of OTUs 

and corresponding number of reads found in trout intestinal mucosa samples. 
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